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ABSTRACT

This thesis counsiders the expected matched filter response to a
signal transmitted through a communications channel whose average
scattering properties are known in terms of a scattering function. The
matched filter is treated as an image which has been blurred by cthe
properties of the interrogating signal. Removing this blurring is
called deconvolution and is the problem addressed in this thesis. The
problem is formulated to allow efficient application of the Singular
Value Decomposition (SVD) as a method of deconvolution. It is shown
that this form is the identical operation to the standard deconvolution
via spectral division. Additionally, the problem of noise in the image
is addressed and the trade—off between resolution and noise is

discussed.
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0 L ]
- an_

Given two mxn general matrices A and B,
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Chapter 1

General Introduction

An important signal processing problem which has been receiving
increased attention is that of identifying the transmission character-
istics of a noisy, dispersive communications channel. 1In the context of
this and many other treatments, these characteristics are modelled as a
scattering process and described by the corresponding scattering
function. The function describing the channel characteristics, called
the channel transfer function, is typically treated as a linear time-—
varying filter in a noisy channel. This leads directly to the deriva-
tion of the scattering function.

The scattering function can be thought of as a description of the
time and frequency spreading characteristics of the channel. In an
active scheme, a signal is transmitted through the channel to probe the
scattering function. The received signal is processed to extract this
information. There is, however, no perfect probe. Any signal will
distort the scattering function estimate, each according to its own
properties. Analogously, a lens used to image a physical object will
distort the image. Removing the distortion is called deconvolution and
is the central topic of this thesis.

The problem is complicated bv the stochastic nature of the channel.
Convolution in this and many other cases corresponds to a multiple band-
pass filtering operation on the signal of interest. The frequencies in
the signal outside these bands are attenuated often to a point below the
average nolse content. Deconvolution, being the inverse filter
operation, tends to artifically accentuate the noise as it attempts to

compensate for the lost frequency content. This effect can be severe




enough to hide the useful information, rendering the estimate
meaningless. For this reason, many methods of deconvolu:ion have been
studied(!,9] attempting to avoid this problen.

The method used in this thesis is that of employing the Singular
Value Decompsition (SVD) to form an inverse used to deconvolve. The
advantage of this method is that it provides a simple way to recognize
the regions of missing spectral components, manifest as singularities,
and treat them in forming the inverse so as to reduce the distorting
effects of the inverse filter. Since it is not possible to recover
those spectral components buried in the noise, information is lost. The
accuracy of the deconvolved estimate is therefore partially determined
by the signal-to-noise ratio of the return.

Leading up to the deconvolution algorithm, a review of the
mathematical basis is needed. Chapter 2 begins with the typical model
of the communication channel. The concepts of the signal auto-ambiguity
function and the matched filter are presented. Because the algorithm is
ultimately implemented on the digital computer, the equations are
discretized and the remainder of the thesis utilizes this representa-
tion. The balance of the chapter presents the problem in matrix form
and introduces the SVD and the formulation of the pseudo-inverse.

As an Important stepping stone to aid in the understaanding of the
more complex two-dimensional problem, Chapter 3 presents the
simplified one-dimensional case (range spreading only). It will be
shown that by writing the convolution utilizing a circulant matrix, the
problem of pseudo-inversion deconvolution via the SVD is identical to

deconvolution via spectral division.




Chapter 4 addresses the problem of deconvolution in two dimensions.
The circulant matrix convolution takes on a more complex form and
although the magnitude of calculations required to form the pseudo-
inverse increases, it remains an efficient algorithm. It will be shown
that the two-dimensional deconvolution via the SVD also is identical to
deconvolution via two-dimensional spectral division., A few graphical
examples of the algorithm implemented in two—dimensions are given. For
the final example, noise was added, and the algorithm's performance in
this case is shown. A short discussion of the estimation error is

presented and is shown to be in agreement with the actual results.




Chapter 2

Modelling the Channel

2.1 1Introduction

The channel to be considered is typically modelled as a noisy,
doubly spread channel characterized by a linear time-varying filter and
estimated by a scattering function. If the goal is to identify the
channel, then a method of estimating the scattering function is
required. 1In the typical active scheme, a known signal transmitted
through the channel will be spread in frequency and time and this in the
presence of noise is the received signal. This spreading characterizing
the channel is called the scattering function. With knowledge of the
transmitted signal, the received signal can be processed to extract an
estimate of this function.

Although the concept of the scattering function is important to the
discussion, a derivation of the function and its properties is not.
There are several references(1:12,13] ¢4 provide a thorough trcatment of
the scattering functions which will only be stated in this thesis.,

The equapions will be immediately discretized allowing the problem
to be cast in matrix form for implementation on the computer. To close
out the chapter, the statement of the SVD theorem is presented followed
by a discussion of its ability to deal with near-singularities in the

matrix that are detrimental to forming a useful pseudo-inverse matrix.

2.2 Fundamentals

Consider an analytic signal x(t)., 1t is transmitted through the
channel and is modified according to the scattering function associated
with the channel. The received signal, y(t), is commonly processed by

the narrow-band correlation receiver,




a8, = | [ y(e) o (e-1) e 2T |2, (2-1)

which is the cross—correlation between y(t) and a time (t) and

frequency () shifted version of x(t). This is called the matched
filter and is that filter which maximizes the SNR between the output and
the input in the presence of white noise.[11]

The matched filter output contains information about the scattering
function, but only to a certain accuracy. Measurements of any kind can
only be as accurate as the probe used to make the measurements. For
example, a physical object can be measured only to within the accuracy
of the ruler, In this case, the probe is the transmitted signal which
has a finite resolution in both the time and frequency dimensions. This

accuracy is given by the auto—ambiguity function,

a(p,t) = ‘ Jx(t) x*(t-1) e-z"”tdt 2, (2-2)

where * denotes complex conjugation and is a shift invariant function.
The overall effect is a smearing of the scattering function due to
the limited resolution of this ambiguity function. More accurately, the
mean matched filter output formed with the returned signals can be
written as the double convolution of the ambiguity and scattering

functions[12:13], i.e.,
E (m($,D} = a($,é,1,D**s($,1), (2-3)

where ¢ and T are hypothesized ¢ and 1 values and s(4,T) is the scat-
tering function. In this manner, the convolution can be thought of as a
mapping of the scattering function into the matched filter. By finding

the inverse mapping operator, the matched filter can be deconvolved to




recover an estimate of the scattering fuanction. A good analogy is that
of the photographic process. The scattering functlon corresponds to the
objects to be photogranhed, and the matched filter average to the
photograph. The ambiguity function is analogous to the lens which
slightly fuzzes the image. The deconvolution process then corresponds
to removing the blur caused by the lens resulting in a clear image.

Any one matched filter output is only a single realization of the
scattering function due to the stochastic nature of the channel. An
estimate of the scattering function requires an average over many
realizations of matched filter outputs. If the scattering function is
non-changing over multiple interrogations, this may be a <imple time
average. For a slowly varying scattering function, a moving average or
a tracking algorithm, possibly with controlled forgetting, may be
employed. The average is generally performed prior to deconvolution,
but may be done following deconvolution depending on the situation. In
any case, the averaging problem in independent of the deconvolution
problem and will not be addressed. It will consequently be dropped
hereafter.

Rewriting (2-3) in an integral form,

a(s,7) = [ s(4,)a($ -4,7 -1)dTds. (2-4)

-
It is clear that if the ambiguity function were a delta function at
(;,;) = (0,0), no Aeconvolution would be necessary. For a signal

with a near 1deal ambiguity function, deconvolution may not be helpful.
There are a great many useful signals, however, with spread ambiguity

functions where deconvolution can be important.




2.3 Discrete Representation

Because the processing of these signals is generally done
digitally, it is appropriate to develop a discrete representation of the
continuous equations. Digitalization is equivalent to dividing up the
7-¢ plane into a finite number of cells with sufficient resolution to
allow accurate reconstruction in the continuous domain. The size of the
cells must therefore be chosen in accordance with sampling theory.

A signal used for imaging purposes will necessarily be of finite
duration and hence can be represented with a finite number of samples.,
Let the transmitted signal be of length L samples starting at =0 and
with spacing At. Also, suppose the required resolution along ¢ is Aé,
centered about ¢=0, and the total number of samples in this direction is
K. Without loss of generality, let both L and K be odd. The discrete

representation of Equation (2-2) is written

L-1 .
a(m,n) = 2 x(l)x*(l-n)e-znj(mA¢)(nAT) At 2,
1=0
_ =(R-1) (K-1)
nETT, L., T2
n=-(L-1), «¢. , (L-1) (2-5)

The ambiguity function is thus (2L-1) samples long in the 7 direction

centered at 1=0, and K samples long in the ¢ direction centered at ¢=0.
In general, ;he size of the scattering functicn is not known. With

knowledge of the channel scattering process, and again the sampling

theorem, the dimensions of s(¢,t) can be estimated. Let s(¢,t) be




centered at T = ¢ = 0 and be P and Q samples long in the 1 and ¢
directions, recpectively. Again, let P and Q be odd. The discrete

representation of Equation (2-4) is

Pl Q'
m(m,n) = z z s(k,1)a(k-m,n~1)AtAd,
1=-P' k=_Ql
L (el Q-1
“"(2),...,(2)
- —(BtL'-1 P+L'-1 _
n=-(=—) .. &) (2-6)
where
p =%, Q' =%—1and L' = 2L-1.

These functions and the lengths associated with them will be used

extensively later on.

2.4 Singular Value Decomposition (SVD)

Having written the two-dimensional discrete convolution as equation
(2-6), the next logical step is to write this equation in matrix form.
The double convolution will be expressed as a matrix multiplication;

hence, the general matrix form of Equation (2-6) will be given as

M = AS, (2-7)

where M and S are the matched filter aud scattering function matrices
and A, the ambiguity function matrix, is the operation which maps S into
M. Deconvolution is thus performed by finding a matrix defining the

inverse mapping operation.




A suitable matrix wculd be the inverse of A, written éfl.

Multiplying both sides of Equation (2-7) by A~l yields
Alw=s (2-8)

where AlA = I, the identity matrix. If A is not of full rank, that is
1f one or more of the eigenvalues of A are zero, then A is called a
singular matrix and éfl will not exist. Furthermore, if_é is not
square, again éfl will not exist. Instead, the pseudo-inverse (also
called the Moore-Penrose (MP) generalized inverse), éf must be used.

The formulation of éf also helps alleviate another major problem.
Deconvolution of a single matched-filter produces only a single
realization of the scattering function due to the stochastic nature of
the process. If the matrix A is ill-conditioned, that is if the ratio
of maximum to minimum eigenvalues (the conditioning number) is
sufficiently large, the deconvolution process may accentuate unwanted
noise resulting in a poor estimate of the scattering function. As an
analogy, consider deconvolution via spectral division in a simple linear
system, The output is the convolution of the input with the system
transfer function. If the transfer function spectrum has a wide dynamic
range, the division of the output spectrum by the transfer function
spectrum will lead to significant errors in the regions where the
transfer function spectrum has small values but the response 1is finite
due to noise, |

For these two reasons, the singular value decomposition (SVD) is a
useful tool. First, a statement of the SVD theorem.[4,8] Note that [.]

indicates the complex case.
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Let mxn
A €R ;[C

mxn
AceR ]

r bl
that 1s, a real valued;[complex] matrix with dimensions mxn and

rank r. Then there exists orthogonal;[unitary] matrices U €

ROXm; [cuXm] and v e RVXN; [COX0] such that

A = UAVT; [yavH] (2-9) .
where
S 0
A=
and

S = diag(9},...,0.) with

Ul,) e s >Or > Oo

The diag(*) operator defines a matrix whose diagonal elements are

the values in the parentheses and whose off-diagonal elements are
all zero. This is commonly referred to as a diagonal matrix.

The columns of the matrix U are the orthonormal eigenvectors
of the matrix é?é;[éﬁé] and are called the left singular vectors,
while the columns of the matrix V are the orthonormal eigenvectors
of ﬁé?;(ééﬁ] and are called the right singular vectors. The
numbers J(,***,0, and Opyy = 0,°*+,0, = 0 are called the singular
values and are the positive square roots of the eigenvalues of -

ATa; [ARA) or aaT;[aaM].

Under certain conditions the SVD of A takes on a simpler form
making its computation less cumbersome. Such a case is that of a real

symetric matrix A of dimensions NxN. Because of this symmetry,

ATA = AAT




11
and so
u=y

and is of dimension NxN. The SVD of A becomes

A = yAgh (2-10)
where
A = diag{oy,0,,°+,0, 1. (2-11)

Forming the product é?é, equation (2-10) yields the result
ATA = uAuH uAuR = pA2uH, (2-12)
where, because U is a unitary matrix,

Ut = u7l and so UHU = I,

and

2 2

2 , 2
A® = diag {00, Tis eees Oy

}. (2-13)

Clearly the eigenvalues of é?é are the squares of the eigenvalues of A.
Therefore the singular values of A are also the eigenvalues of A. This
case is of fundamental importance in the sections to follow.

The pseudo—-inverse éf has the property that
Ata = yrivH (2-14)

where lf is the pseudo-identity matrix. If is equal to the identity
matrix I if A is of full rank (o > O for all k). If not, I* contains

zeroes on its diagonal corresponding to the zero valued singular values




12
on the diagonal of A. Applying this condition to Equation (2-9),
at =yl (2-15)
where
A—l_ . -1 -1
A "= diag {01 sy oeees T, 0, ... 0} (2-16)
having n-r zeroes.
Define the new scalar function,
-1
+ g, if ci > €
Ui = - . (2-17)
0 if o, < ¢

where € is an arbitrary yet carefully chosen threshhold value such that
€ » 0, If e =0, the pseudo—~inverse is formed as given in equations
(2-15) and (2-16). If € > 0, the SVD expansion is truncated and the

pseudo~inverse is

=g
+
[]

=

&
o o]

(2-18)

where

_ + +
diag {01, cees Oy

-
-+
L}

}. (2-19)

If the conditioning number of A (0p,x/Opin) is small, € may be set to
zero without affecting the integrity of the deconvolution process. If,
however, A has a large conditioning number, A is said to be

ill-conditioned, and taking the inverse of the small singular values




will amplify the effect of
tion a very noisy process.
introduction cf noise also

careful consideration must

13

random perturbations, making the deconvolu-
Since truncation of the SVD to reduce the
results in loss of structural information,

be given to the choice of €.
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Chapter 3

The One-Dimensional Case

3.1 Introduction

Thus far, nothing has been said about the actual form of the ambi-
guity matrix A. Obviously the choice of an ordering for A is fundamen-
tal te the sclution. Cast in the right terms, the SVD expansion can be
simplified making the problem of deconvolution less computationally
cumbersome. As a prelude to understanding the more complicated
two-dimensional case, first consider the problem in one-dimension.

The equations derived earlier can be collapsed by letting
¢ = 0 (m = 0). In this case, only temporal variations are taken into
account. Such a representation is certainly valid for the class of
signals with poor resolution in ¢, such as the short tone pulse.

The chapter begins with a review of the Discrete Fourier Transform
(DFT) in one dimension. Next, the circulant matrix is introduced. It
will be shown that the circulant arises naturally in writing the
convolution in matrix form. Being a well-behaved matrix form, the
circulant reduces the complexity of the problem and Sections 3.4 and 3.5
detail the process of forming the pseudo—inverse and employing it to
deconvolve. Finally, it is shown in section 3.6 that by writing the
convolution in circulant form, deconvolution via the pseudo—inverse
method is in fact identical in form and complexity to deconvolution via

the standard spectral division method.

3.2 The One-Dimensional Discrete Fourier Transform (DFT)

Consider an N-point sequence of uniformly spaced time samples,

x(0), %x(1),...,x{N=1). The Discrete Fourier Transform (DFT) will be an
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N-point sequence of uniformly spaced coefficients, X(0),
X(1),...,X(N-1), and the two are related by the following pair of

equations;[lol

kn
N"l - T
X(k) = ¥ x(n)e ™ * k =0,1,..0,N-1 (3-1)
. n=0
kn
N-1 ——
x(n) =-§ Z X(k) 27y N n=20,1,...,N-1 (3-2)
k=0

The first is called the forward DFT, and the second defines the inverse
DFT, or IDFT.

If these two sequences are used to define the two column vectors,

[XosX]seoesXn-1)T (3-3)

» |
W

and

X

[XI’XZ""’XN-I]T’ (3-4)

where the sample number is now written as a subscript, the DFT operation

can be written as a matrix multiplication,

X = Fy x. (3-5)

The new matrix, Fy, is called the N-point DFT matrix, where

kn
e—ZﬂJ N

(EX)kn = y kyn,=0,1,...,N-1. (3-6)

From Equation (3-5) the IDFT can be directly written,

X = X (3-7)

H
LY
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which 1s in agreement with the matrix expansion of Equation (3-2) within
1
a constant, specifically N. (')H is the Hermitlan transpose operator.

This matrix formulation will be useful in the following sections.

3.3 Circulant Matrices

Circulant matrices, or circulants, are a highly tractable class of
matrices. Eigenvalues, eigenvectors and inverses are simply and
efficiently found, making the circulant a desirable form in which to

cast the problem when it is possible to do so. The circulant matrix, C

is necessarily a square matrix and has the form

CO Cl C2 sev e CN—l

CN_l CO CI es s CN_Z

c= |- - . - (3-8)

cl C2 "'.'CN"I CO

Because the NxN matrix C can be completely specified by a single vector

of length N, the notation

C = circl{cy,C[,+++, cy-1} = circ {cT} (3-9)

-

is used without loss of information. The circulant is a special type of
Toeplitz matrix, and often used to approximate and explain the behavior

(7]

of the latter.

Of the many special properties of the~circulanc, the following four

are relevant to the discussion to follow.
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(i) If B and C are both circulant matrices, then the product BC

comnutes and is also circulant. That 1is,

D =3BC = CB = circ {dy.

—

(ii) All circulants have the same set of eigenvectors.

Snecifically, the mth eigenvector of an N x N circulant,

= W2 e, w, wn, L, W(N-DaT,
m=0,1, ..., N-1, (3-10)
where

w = e2mi.(1/N) (3-11)

and the N"1/2 is a normalizing constant. These eigenvectors

are the same as the vectors in the IDFT matrix §§° In fact
if the matrix U is constructed using the ;Q's as the

columns, then

- _ H
U= 0o [ wp | oo | wyop) = By

within a constant (N-1/2),
(1ii) Corresponding to the eigenvector ;5, is the eigenvalue
Ap, where

N-1
\g = 1 W@k, m=0, 1, ..., N-1 (3-12)

k=0

and w is defined the same as above. Simply stated, the
eigenvalues are the DFT coefficients of the vector cT defined
1“ (3_9)0 If

T = {AgyA|seee, An—p}T (3-13)
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then

T = Fxc . (3-14)

(iv) As a result of these properties, the SVD of C, from

equation (2-10) becomes,

H
C = Fy AR, (3-15)
where

A = diag{dosAlseee,An-1} = diag {(Fyo) T}, (3-16)

an MxN diagonal matrix of the DFT coefficients of c.

There is one final point to make here. If C is given as a real
matrix, the SVD theorem requires that it be decomposable by real
matrices. Equation (3-15) makes no provisions for this. Whether C be
real or complex, it is still decomposed by the complex matrix Fy and its
Hermitian transpose. The choice of mat:-ices in the statement of the SVD
theorem is, however, not unique so that the decomposition may be
performed using complex matrices. It is required, however, that any
complex matrix used be tranformable into a real valued matrix by means
of a unitary transformation to preserve the space.

It is important here that one particular case be considered, that
for a real, symmetric circulant matrix A. This requires that the first
row (a) of A be circular symmetric about the time zero point (the first

sample); i.e.,

N
aj = ay-i 1=1,...,‘? -1 N even

or i=1,..., N1y odd. (3-17)
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For a time sequence defined in this manner, the DFT coefficients will
necessarily all be real and symmetric, hence there will be a redundancy

in the singular values, i.e.,

-1 N even

o)
Lo}
[N
]
p—

—E— N odd (3~18)

In this case a new matrix may be formed from Fz by taking linear
-

combination of the columns (singular vectors) corresponding to redundant
singular values. This 1s equivalent to defining a unitary transformation
(a rotation of the basis vectors).

Let these new basis vectors, rj, be defined

— 1 — - N
r, = [w. + W, ] . . =1,..4, 5 - 1; N even (3~-19)
i 7 i N-1 2
and
- ) Vo= = - N . -
r o= d -:;— [w iV H—} y =10, 5+ 15 N even  (3-20)

where ;i is defined in equation (3-10) and j = /=1. The cases i=0 and

'=-g are special because the singular values o, and oN/2 are real and

unique. The new basis vectors are now

T 0w
o o

?i‘= //% {1, cos(2ni/N),...,cos(2ni(N-1)/N)}T, i=1,.e.,

o=z
!
—

TN/2 = WN/2

r = /Z {0, sin(27i/N),..., sin(27i(N-1)/N)}T, 1=1,...,5 -1,
N-i N 2

(3-21)
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where

L' = L-1 (3-26)

and N is taken to be even. The aj's are the ambiguity function values
found from equation (2-5) with ¢=0 (m=0). Becauvse the ¢=0 slice of the

ambiguity is symmetric about =0 (n=0),
_5-_-' {ao,al,oco,aL' ,O,'..,O,aL',...,az, al}T, (3"‘27)

that is because

aj = a.y, 1i=1, 2, ..., L' (3-28)
The ambiguity function matrix,

A = circ &t} (3-29)

1s an NxN matrix and so this A used in Equation (2-7) completely

discribes the linear convolution of A and S. Using Equations (3-15) and

(3-16),

A=FlAF (3-30)

- —=N-=N
where

A = diag {(Fy a)T}, (3-31)
and the pseudo-inverse,
+ _ H ,+ -
A=RA K (3-32)

from Equations (2-17), (2-18), and (2-19).

3.5 Deconvolution

Going back to the fundamental Equation (2-7), choosing the ordering

for A given by equation (3~9) dictates the orderings for M and S as
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well., 1If the scattering function is chosen to be P samples long and a
(equation (3-27)) has been padded with minimum necessary P-1 zeroes,
then,

S = {0,000, S=p'ysee Sgseee Sptyees;0,...0}T, (3-33)

where

P! = —— (P odd) (3-34)

and s; is the sequence of samples of the scattering function padded at
both ends with L' zeroces. S is therefore a vector of length N. The

matched filter M is now necessarily defined as

M = {moytyeee,by,es.,my'}T (3-35)
where
N' = 31_;_1_ (3-36)

There is one special note at this point. Equation (3-36) requires that

N be odd. Since the SVD in Equation (3-30) benefits greatly in

computional efficiency from employing an FFT algorithm, N must be made

even, i.e., a power of two. In this case,'z must be padded with an

odd number of zeroes, and zerces must also be placed in the appropriate

positions in M and S. | 7.
Deconvolution is now performed by multiplying both sides of

equation (2-7) by the pseudo-inverse ﬁf to yield

Aty =5 (3-37)
and thus recovering an estimate of the true scattering function with the

blurring effects of the signal ambiguity function reduced. Combining

equations (3-32) and (3-37) results in
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Fo At FOM =S, (3-38)

Working from right to left on the left side of this equation, Fy M
defines the DFT of the vector M. Each of the spectral components of
this DFT sequence is then multiplied by the corresponding spectral
component of‘§+, and the resulting vector transformed by the IDFT

watrix., Rewriting,
S = IDFT{DFT(aT)* o DFT(})} (3-39)

by virtue of Equations (3-16) and (3-27) where the ( )¥ operator is
defined in Equation (2-~17). The operation ( ) @ ( ) is an element by

element multiplication of the two vectors.

3.6 Relation to Spectral Division

As was developed earlier, the discrete representation of the
matched filter in one dimension is simply the one-dimensional discrete

convolution of the ambiguity function and the scattering function, i.e.
m(k) = a(k) * s(k). (3-40)

With these sequences padded with zeroces as in (3-27) and (3-33), this

convolution of time sequences may be written as an element by element
multiplication of spectra via the convolution theorem.!10] The above

equation becomes
DFT{m(k)} = DFT{a(k)} ° DFT{s(k)}, (3-41)

or more simply

DFT {m(k) }
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where > ———< indicates an element by element division. If the
spectrum of a(k) has a wide dynamic range, then division by the small

values may cause large errors by amplifying the noise in these areas of

the matched filter. To avoid this, a new sequence is defined,

DFT{a(k)}El if >e

DFT{a(k)} + = (3-43)
0 if <e

where € is a judiciously chosen threshold value. Replacing this in

equation (3~42) and employing an IDFT operator on both sides yields
s(k) = IDFT[ ({DFT{a(k)}* o DFT{m(k)}] (3-44)

which is identical to Equation (3-39). Thus it has been shown that the
SVD formulaticon is identical to spectral division and since definitions

(3-43) and (2-17) are the same, thresholding serves the same purpose in

both methods.




25

Chapter 4

The Two-Dimensional Case

4.1 Introduction

The more general case of the problem presented in two dimensions
must now be discussed. To retain the efficiency of the algorithm in
this case, it is appropriate to reformulate the problem using a more
complex, yet still amenable matrix form for the matrix A. With this form
and such tools as the tensor product and the two-dimensional DFT, the
two—-dimensional case is shown to be a highly tractable problem in the
context of the SVD.

Section 4.2 introduces the tensor product and the two-dimensional
DFT in a useful form. As mentioned earlier, a new matrix form, the
block-circulant~with~circulant-blocks form, is presented in section 4.3.
The singular value decomposition of this form is then given. Two-
dimensional convolution can now be written in two different forms. The
first results in a simple circulant matrix A and deconvolution reduces
to the case presented in Chapter 3. The second employs this new matrix
form and sections 4.4~4.6 show that in this case deconvolution via the
SVD is identical to deconvolution via two-dimensional spectral division.

The remainder of the chapter presents a few examples implemented
on the computer along with a short discussion of the considerations

involved in choosing a threshold.

4,2 The Two-Dimensional Discrete Fourier Transform (2DFT)

Before presenting the two-dimensional DFT, a brief review of the

tensor or direct product is in order. Consider a K x L matrix A and an
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M x N matrix B. The direct product, also called the tensor or Kronecker

product of A and B, is defined;

Pa-llg, aILB, e 4 ey alLE—

i
x

B=|. (4-1)

agiB, ag2B, « . o, aKL%ﬂ

e

resulting in a matrix with dimensions KM x LN. This form is essential
to the following discussion.

Consider an M x N matrix x. The two-dimensional Discrete Fourier
Transform (2DFT) is a matrix X also of size M x N and is found using the
double Summation[lol,

N-1 M-1 1n

—oqj{Xm , 1n
X(k,1) = § ] x(m,n)e 2MGr N ] (4-2)
n=0 m=0

where

0 <k <M-1 and 0 < 1 < N-1. (4-3)

It is required that the zero-shift element be in the upper left corner,
i.e., x(0,0). If this sum is split and written,

N1 M=1 s K _ops 1n

X(k,1) = J [ ] x(mm)e "W Je TH,  (4-4)

n=0 m=0
it can easily be seen that the term in the large brackets is the one-
dimensional DFT of each column, a total of N DFT's each of an M-point
sequence. The outer sum is clearly the one-dimensional N-point DFT of
each of the M rows. Thus the two-dimensional DFT can be performed

simply by performing a one-dimensional DFT on each column and also on
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each row. This is the usual method. The number of complex multiplica-
tion required to perform the 2DFT via FFT routines is
N(MlogyM) + M(NlogyN),
or more simply
MNlogo(MN), (4-5)
using the usual Nlog)N rulel10],

It will be very useful to be able to write the 2DFT in matrix form
as was done in the one-dimensional case. First a new operation must be
defined, the ravel. If A is an M x N matrix, the ravel of A is formed
by stacking the rows of A end to end to form one column vector of length

MN. That is,

rav[A] = {agg, agls +e+» 230(N-1)s 310> 311> so+> a(M—l)(N-l)}T =a

(4-6)

where the indices begin at zero instead of one and are written as an

integer pair of subscripts. The inverse operation is

irav{aoo, 3801s ee+s 30(N-1)» 310> 311, <+v> a(M_l)(N_l)}T
= irav (a) = A. 4-7)

With this definition, the 2DFT of A can be written

b = G rav[a], (4-8)

where b is an MN-point column vector and G is the MN x MN element 2DFT
matrix. By careful inspection of (4-2),

G =Fy®EN, (4-9)
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the direct product of the two one-dimensional DFT matrices introduced
in Chapter 3. The resulting vector b is the ravel of the 2DFT of A,
that is if

B = 2DFT(4), (4-10)

then

B = irav(d), (4-11)

where b 1s given in (4-8).

4,3 More Circulant Matrices

The more complex form of the two-dimensional DFT over the one-
dimensional case makes the circulant form presented in Chapter 3 less
useful. A more complex matrix is needed to hold all the additional
information of the two-dimensional case, Yet it would be desirable to
find a new matrix form in which to cast the problem and still retain the
amenable nature of the circulant. It is for this reason that a more
complex circulant form is investigated. With a certain amount of
foresight the block-circulant-with-circulant-blocks form will now be
introduced. It will be shown in a later section that this matrix form
is indeed useful in writing the two-dimensional problem.

Let Aj; be an N x N circulant matrix. Furthermore let
A= cire {Ay, A}, <., Ayl (4-12)

The matrix A contains M circulant blocks arranged such that the blocks
themselyes are circulant. The dimensions of A are MN x MN, a
necessarily square matrix called a block-circulant-with-circulant-blocks
matrix of order M, N. More simply, A is said to be in BCCBM, N- A short

example at this point is highly instructive.
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Example 1

Consider the following construction. Let

ab c d e f
ﬁ)= ’él ’

b a d ¢ fe

1l
[}
=]
(=9

\&

1]

then — -

1>
i

= circ {8, A], A2}

(D
[0
o
[
Q.
O

cd
L? c fe ba

A 1s in BCCB3 j. Notice that a matrix in BCCB is not necessarily a

[1]
rn
[V
o

circulant.

As an extension of the properties of a circulant given in Chapter

3, the following theorem!{3] can be derived.

Let A be a matrix in BCCBy y constructed as given by (4-12).
Furthermore, let Api;, k=0, ..., M-1 be the diagonal matrix of
eigenvalues of block Ay. The matrix A is diagonizable by the

unitary matrix Fy ® Fy and the diagonal matrix of eigenvalues of A

is given by
M-1 wk
A = EO _{ @ A"+l (4"13)
where
k
W= diag(l,wk, w2k w(M-1k) (4-14a)
by
and
= o2mi/M (4-164b)
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A valid eigenvalue decomposition of A is therefore,
A= (Ey @ % A (B ® By (4-15)

With this construction in hand it is now appropriate to

investigate orderings of the two-dimensional ambiguity function matrix.

4.4 The Pseudo-Inverse in Two Dimensions

There are two distinct orderings of the ambiguity matrix to be
considered. The first is a more straightforward method and results in
a simple circulant matrix. Although this form permits easy calculation
of the singular values, the second form to be investigated is clearly
the preferable of rh: two., This second ordering results in a matrix in
BCCB form al-o vrmitting easy calculation of the singular values. It
will be .hown that this form is less computationably taxing and that
deccuvolution via the SVD in this case is identical to deconvolution via
spectral division.

Consider the auto ambiguity function defined by equation (2-5).

This real-valued function has an inherent symmetry 2bout ayqe, that is,

aij = a(-i)(~j)- (4-16)

It will be shown that this fact results in a real, symmetric matrix
which necessarily has all real eigenvalues. Another important
consideration is that of zero padding. The ambiguity function is given
to be K_samples long in the ¢ direction (m) and 2L-1 samples long in the
T direction (n). If the scattering function is assumed to be P and Q
samples long in the ¢ and t directions, respectively, then the ambiguity
function matrix must be zero padded to be a minimum of M and N samples

long in the ¢ and 1 directions, where
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M=K+P~1and N= (2L - 1) + Q - 1, (4-17)

Typically, however, M and N will be chosen to be the nearest power of
two greater than these minimums to permit use of the FFT routines. With

these two considerations, the following vectors are now defined.

a...M‘ (O, e o & e e v e s e+ s e e 4 s & s s s s s o s e O)T

@ |
!
~
A Y
|
r—
1

(O, . s e« o . @ ¢« & o o . LI ) * e o e & e & o ) O)T

a_K’ = (O,..,O,aK‘-L’,.., aK‘_l, aK'O, aK'l,.., aK'L',O,..,O)T

;0 = (O,.--,O, aoL’,..., aol, aoo, 301,..., aOL’, O,oo-, O)T
;k’ = (0,¢4,0, @g°L"yeey 3K 1» KOs @K =1sve> aK'-L',O,..,O)T

;K'+1 = (0, » * L] L] * . . L] . . . L3 . . . . . . . . . . . » O)T

aM‘ = (0, a 8 e s ¢ e & & & & o2 & & s+ e & e & s & = O)T
(4-18)
where
K =5, L =L-1, anan =54 (4-19)

Each vector is padded with N - 2L + 1 zeroes and so there are M vectors
each with length N. Notice K, N and M are chosen to be odd, but they
can just as easily be chosen to be even.

Let the vector a be defined as the concatenation of all of these

vectors, that is, let
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~ T —T ~T,.T
a = G-M‘, .oy ao, e s 0y aM } . (4—20)

Furthermore, let a new vector a” be defined as the vector a cyclic

shifted to make apg the first element. The ambiguity function matrix is

then defined,
A = circ{a’T}. (4-21)

Since a” is a vector of length MN, the matrix A has dimensions MN x MN

and is a real, symmetric, circulant matrix.

Example 2
To better understand this construction, take the example of a 3 x 3

anbiguity function convolved with a 3 x 3 scattering function. In this

case,

Therefore,

M=3+3~-1=5ad N=3+3-1

1]
w

by virtue of (4-17). Furthermore,

a,=(, o0, 0, 0,07
a-] = (0, aj-y, ajg, app, 0T
a9 = (0, agy, agg, a1, O)T
ap = (0, ayy, ajp, aj-1, O
a =(, o0, o0, 0, 0T

The matrix A is shown in Figure (4-1). It is clearly a 25 x 25 element,

real, symmetric, circulant matrix.
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The matrix defined in equation (4-21) can be decomposed as were the
circulants from Chapter 3. The singular values are simply the DFT
coefficients of the vector a”. With this construction, however, the DFT
coefficients have no physical meaning. 1In the one-dimensional case, the
DFT coefficients described the spectral contents of the ambiguity
function, but because in this case the vectors are lined up end to end,
the DFT loses this meaning.

There is one more point to mention before moving onto the second
construction. Using the standard NlogoN rulel{10] for describing
computational complexity of the FFT, this matrix will requre MNlog)MN
complex multiplications in computing a pseudo-inverse. This will be
used in comparison with the second constructicn now introduced.

Let the vectors aj be defined:

;b = (aoo, aol, ey aOL‘, O, se sy O, aOL’, coey 302’ aOI)T
a) = (ajp. a11y +ser 31L7, 0y weey, 0, 81-1") +ve, 31-2, aj-T
ak” = (ag“0,ag " 1s-+» aKL"s 0,4.,0, ag“-1",+¢,ag"-2, aK’-l)T
-a-K‘+1 = (O, 0, ¢ o e 8 e s & 8 & & & e 6 s & % & s s e s O)T

;k‘+l—M = (0, 0’ ¢ e & & & o o 8 o s s o & 2 e e 6 & o & o O)T

P
=

(aK‘O’aK‘—I,-'aaK,—L‘)O, ey 0, aK‘L”"’ aK‘Z’ aK‘l)T

r
1]

(2105 aj-1seeey 21-L"50, «ovy 0, 211", «oe, a2, 217

(4~22)
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where the equation in (4-19) still hold and each vector is padded with a
minimum of N-2L+1 zeroces. Also, the indices are written as an integer
pair of subscripts. Again, there are M vectors each of length N.

Furthermore, let

%

e mipal=T
“*‘P{aO}

Ay = circfgf}

Ay = circ(a. ). (4-23)

Finally, the ambiguity function matrix ‘s defined

A = circ{Ag, A], +es, A1} (4-24)

a matrix in BCCBy .

Example 3
Consider the following example. As in the previous example, let
both the ambiguity and scattering function be described by 3 x 3

matrices. Since Equations (4-17) still hold,

M = N = 5.
The vectors are defined:
ag = (agg, ag1, 0, 0, agpT
ap = (ajp, a1-1, 0, 0, a7
ag =( 0, o0, 0, 0, OT

s}
|
—

[}

(aj9, ay1» 0, O, al-l)T.
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The resulting matrix A is shown in Figure (4-2), and is clearly in
BCCB5 5. Notice that A is also real and symmetric guaranteeing real

singular values.

With.é in BCCB form now, Equations (4~13) and (4~15) can be used
to decompose the matrix. Let

-1 .
(A), if (A, > ¢
+ i i
(V] = . (4-25)
0 if (A)i <0

where (A){ is the ith singular value, that is the it" diagonal element

of A. The pseudo~inverse of A, designated éf, is calculated as
A* = (Fy ©@ B A (Fy © Fy) (4-26)

where € 1s choosen large enough to avoid the harmful effect of 1ll-
conditioning in A, but small enough to retain sufficient structure for

deconvolution.

4.5 Two-Dimensional Deconvolution

With these two orderings for the ambiguity function matrix, the
remaining two matrices given in the fundamental equation (2-7) are also

determined. Consider the first‘é matrix form. Let

-— - T
= {a_M,, vy ao,a-o, aM, } (4—27)

1%

-

where thelsi vectors are defined in (4-18). 1t should be noted that A
is not the ambiguity function matrix in (2-7). It is the matrix defined
in (2-5), the discrete representation of the ambiguity function. The

matrix A is a ravelled matrix defined in (4-21).
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Let the scattering function have a form identical to E, that is

- - T
§ = {—S-_M’, ooy So) sy SM)} (4_28)

where the vectors sj are identical in form to the aj's but with sij the

scattering function values substituted for the aij's. Again,_i is not
the scattering function matrix in (2-7). The matched filter matrix,

E, given by (2-6), represents all possible coverings of the matrix‘é by
the matrix_é. The (i, j)th element of.g is the sum of all the products
of the coefficients a and s withlé shifted i elements over and j

elements up or down relative to S.

Example 4

-

Consider the case given in example two. The matrices_é and S are

defined,
0 O 0 0 0]
i 0 aj-; ayp a1 O
A= |0 ap-) 30 a9 O
0 a-j-; a-1p a-11 0
0 0 0 0 0]
and
0 0 0 0 0]

0 sj-y sig s11 O

len
]
o

sp-1 spo sor O}.

0 s-j-1 s-10 s-110
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To find (ﬁ)z_l, place.§ on.§ and shiftlé one element to the left and

2 elements up,

0 lai-1 { a0 { a1l 0

0 0 0 0 0 0
a-10 |3-11
0 0 JIsi-1 {510 0 0
?
0 0 0 0 0 0

0 Js~j-1ls-10 Is-11 | O

and sum all the non-zero products.

(M2-1 = a9 s1-1 + a1-1 s10
taking advantage of the symmetry of the ambiguity function as given in
(4-16).

The raQel operator defined in equation (4~6) is now employed in

the following two definitions. Let

S = rav{s} (4-29)

and

M = rav{M}. (4-30)
M and S are actually vectors, but will continue to be written with the
underline and treated as matrices. It was with foresight that A was

constructed as given by (4-21), because now,

M = AS, (4-31)




40

the fundamental equation. The matrix A in this case is simply a
circulant and the deconvolution,

S = ﬁfﬂ (4-32)
is identical to the method described in section 3.5. Using the case
given in examples two and four along with Equations (4-29) and (4-30),
Equation (4-31) is shown in its expanded form in Figure (4-1). There 1is
nothing new here, so the second A matrix construction will be

discussed.

In a similar manner to the previous case, let

— - - — T
A= {ao,-nco,aK'+1,.ooo’a_K',o..,a_l} (4-‘33)

where the aj vectors are defined in (4-22). Again, let‘é be defined
in a similar wmanner as é but with sjj substituted for ajj. The
convolution operation producing.é is different. 1In the previous case
the (b;)00 element appeared in the center of the matrix. In this case,
(ﬁ)oo appears in the upper left corner position in the matrix. This
is the result of the ordering chosen for A, the ravelled ambiguity
matrix. It is important that (&)oor the zero-shift element be in this
position when employing the DFT routines as will be done shortly.

M and évare formed once again as given in (4-29) and (4-30).
Continuing the case given in example three, (4-31) is expanded as shown
in Figure (4-2).

Using (4-15) and (4-25) the deconvolution in (4-32) can be

written;

. _ H + _
S=(Eg@F)" N (Fy@F) X, (4-34)

where the matrix A is in BCCBy y. Going back to the definition of the

2DFT, clearly,
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(Fy @ Fy) M = (Fy ® Fy) rav{M} = rav{2DFT(M)}. (4~35)
Since A* is a diagonal matrix, the product
A* {rav {2DFT(M) }] (4-36)

results in a column vector of size N whose ith element is

(A*)4 - [rav {2DFTQN) H . (4=37)

One more term to the left in (4-34) is the I2DFT matrix. The

scattering function estimate, S, can therefore be written

S = 120FT{irav{(A"); [rav{2DFT(3)}];}] (4~38)

which may appear complex, but it will be shown that this equation can be

simplified.

4,6 Relation to Two-Dimensional Spectral Division

Deconvolution via spectral division in two dimensions is
fundamentally the same as 1in one dimension. Using the definition in

(4-33), (4-29), and (4-30), the convolution is written,

= A**é (4—39)

Iz

and employing the convolution theorem,
2DFT(M) = 2DFT(A) ° 2DFT(S) (4-40)

where (¢)e(*) is an element by element multiplication. Deconvolution is

simply written,

2DFT(M)
I2DFT | D===wmmm < (4-41)

2DFT(A)

Jen o
1}
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where again >——————- ¢ is an element by element division. Let

[2DFT(A) ]

-l
2DFT £
I _ JI2DFT(A)], - if e (4-42)

0 if <e

and (4-41) becomes;

S = 120FT{[20FT(A)]" o 2DFT(M) }. (4-43)

Returning to the statement of the SVD for the BCCBy, y matrix
embodied in Equations (4-13), (4-14) and (4-15), a careful look at the
matrix of singular values, A, must be taken. Aqs] is the diagonal

matrix of singular values of block Aq. That is,

Ap+1 = diag {DFT(a)p)} (4-44)
where ap is the first row of the matrix Ay defined in (4-23). Rewriting
(4~44) using summation notation,

nl

Nl 27j N

)y = 1 (ag)ne
n=0

(A4 1=0, ¢ e s, N-1, (4-45)

for the 1th element of MAn+). Looking at one particular element of A,

specifically.(ﬁ)kl, the 1th element of block k.

Ml
(M1 = 1 B A
M=0

M-l [Tl cmla] o ko
) § (agipe TR e 7Y

m=0 _y=0
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and therefore,

M-1 N-1

(_‘}.)kl = Z Z (;m)ne
m=0 n=0

. rk 1
-2nj [-—% + -n—N-]

l=0,-on,N—1 k=0,..-,M—l, (4-46)

which is exactly the form of the 2DFT. -

The matrix of singular values is now written,
A = diag{rav[2DFT(A)]}. (4-47)
Putting this result into (4-38) results in,
S = I2DFT(irav{diag(rav{2DFT(A)}]},* rav (2DFTCD}, 1. (4-48)

But since,

diag {rav(A)}; - {rav(B)}; = rav(A) e rav(B)

and

irav {rav(é) ° rav(g)} =A-° B,
(4-48) is simplifed,
- - 4 -
. §.= IZDFT{[ZDFT(&)] ° ZDFT(E)} (4-49)
precisly the form in (4~43) resulting from deconvolution via spectral
division. 1In back cases, the [ ]* operator is defined in (4-42).

In comparison to the first A matrix form, (4-21), the number of |

complex multiplication required to form the pseudo-inverse in this case

is

KlogyN + NlogoM. (4-50)
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This is the result of the fact that there are M-K rows of all zeroces as
is clear from looking at figure (4-2). It is not necessary to DFT these
rows and for large matrices, this savings can be significant. Form 2
also has the advantage that the pseudo-inverse matrix coefficients
retain their physical meaning, i.e., they are the spectral components of
the original matrix. This is useful in choosing a threshold, €, at

which to truncate the SVD.

4,7 Examples of the Algorithm

The algorithm is applied in the following manner. A cignal x(k) is
defined and the ambiguity function a(m,n) is calculated via (2-5). The
matched filter is generally calculated as the correlation of the return
signal with a time and frequency shifted version of x(k), the continuous
case being given in (2-1). It was stated in Chapter 2 that a single
return can only produce one realization of the scattering function and
so the expectation operator E{*} was introduced. Averaging over many
interrogations of the channel reduces the variance of the process;
hence, the deconvolution algorithm can produce a better estimate of the
scattering function. The ideal case is the double convolution of a(¢,T)
and s(¢,T1) ag given in (2-7) and in the examples to follow, this will be
used as the matched filter to be deconvolved.

The matrix A is formulated using the definition given in (4-24),
the second form. For all the cases given, a(m,n) was choosen to be 64 x
1024 samples long in the m and n directions respectively. This includes
the required zero padding. With this construction, the algorithm is now
embodied in Equations (4-49) and (4-42). It was mentioned earlier that
careful consideration must be given to choosing €. This will be shown

graphically.
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Three distinct signals were chosen and are listed in Table (4-1),
Signal 1 is a VFM consisting of an upchirp linear FM (LFM) of bandwidth
500Hz followed by a downchirp LFM of the same width both centered at
50kHz. Signal 2 is simply a single upchirp LFM with a 500Hz bandwidth.
Signal 3 is a bit more complex. It is generated from a Costas Array
developed via a Welsh construction[sl, and is a six-element signal
based on the 3™ mod 7 construction given in the table and will be
called a CAW. The result is an ambiguity function with » high
resolution main spike surrounded by a pedestal. Surrounding this
pedestal is a clear area containing no ambiguity volume. Minor lobes
appear outside this clear area region and since they contain relatively
little volume, only the main lobe area will be considered.

Three different scattering function were chosen each consisting of
a particular number of point scatterers. They are given in Table (4-2).
The first example uses signal type 1 (STl) and scattering function 1
(SF1). Figure (4-3a) shows the matched filter output. OdB is defined
at the peak spectral component of the ambiguity function and the
threshold, €, is defined with respect to this peak. The remainder of
Figure (4-3) shows the effect of employing particular thresholds. At
~10dB, there is insufficient information retained to deconvolve with
any accuracy. In this case deconvolution is not helpful. As the
threshold is reduced, the algorithm is able to clean up the matched
filter image. Since there is no noise in this case, € may be choosen as
low as desired without any harmful side effects.

The same 1s shown to happen for the cases of (ST2 and SF2) and

(ST3 and SF3) resulting in Figures (4-4) and (4-5), respectively.
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Table 4-1 The signal definitions used in the examples are given here.

Number of | Subpulse | Duration | Band Center | Bandwidth
No.|Signal Type { Subpulses { Number in msec. in Hz in Hz
1 VM 2 1 50 50000 +500
2 50 50000 -500
2 LFM 1 1 50 50000 +500
3 CAW 6 1 10 49700 0
2 10 49100 0
3 10 51500 0
4 10 50300 0
5 10 50900 0
6 19 48500 0

Table 4-2 The scattering functions used in the examples are defined

as a collection of point scatterers as given here.

Number of Highlight | Tau Position | Phi position | Relative

No. | Highlights Number in msec. in Hz Strength
1 1 1 0 0 1
2 2 1 0 0 1
2 10 0 1
3 3 1 0 0 1
2 10 8 1
3 20 16 1
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Next, noise was added. If it is assumed that Gaussion zero-mean
white noise is present at the input to the matched filter, the output
noise distribution is chi-square of order two, more commonly called the
exponential distribution. It is easy to show this to be the case. The
noise in the return is

n = XI‘ + in, (4-51)

a complex random variable (j = Y-1) where both X, and X; are zero-mean
Gaussian random variables. At the output of the matched filter, the

noise

z = |n|2 =X+ x{, (4-52)

which, as advertised, results 1in a second order chi-square distribution.

The probability density function, f,(z), is written

£ (z) = —li exp [ -22 ]. (4-53)
z 20 2q

It is easy to show that the mean of this distribution,

b= L (4=54)
2
20

With this determined, the SNR was choosen to be the peak to average

noise in the matched filter, that is

(peak)yF
SNR = 10 log (———;————). (4~-55)

If a particular SNR is to be generated, then u is chosen to be

(peak)yr
SNR *
10

(4-56)
10
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and the distribution in (4-53) used to generate noise into the matched
filter,

The choice for & now becomes more critical. ST3 and SF3 were used
and an SNR = 20dB chosen to form the next example. If € is chosen too
high, insufficient information remains to deconvolve, as shown earlier.
There is now, however, a lower limit. 1If € is set too low, the noise is
amplified and the algorithm produces poor results as is clearly seen in
Figure (4-6). It would be helpful to have a general idea of where to
set the threshold, given an SNR.

Toward this end, one important property of the auto-ambiguity
function 1s fundamental. This is the self-transform property[zl.
Mathematically,

7 i a(t,8)e 2™ IMV=19)y he = agu,0). (4~-57)

—»

This is important, because now the singular value spread, that is, the
ratio of the largest to smallest 2DFT coefficients of the ambiguity
function, is equal to the ratio of the largest to smallest ambiguity
function values. The SNR can, therefore, be defined with respect to
either the ambiguity function, or its 2DFT. Finally, since the matched
filter is the result of a linear operation (the convolution), the
threshold may also be related to the peak of the matched filter. 1It,
therefore, makes sense to set the threshold somewhere around the average
noise level defined as the SNR.

In this manner, if the matched filter output SNR is, for instance,
20dB, then the threshold should be set relative to this 20dB down level.

Figure (4-6) shows the algorithm's performance on a matched filter with
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a 20dB SNR. It should be noted that since the CAW signal has an
effective processing gain of about 15.5dB, a 20dB output SNR represents
a 4.5dB input SNR which represents a relatively noisy return.

Figure (4-6a) shows the matched filter output. The threshold is
slowly decreased from -10dB to -40dB. At ~10dB, the algorithm produces
a poor estimate as expected. Through -20dB, the algorithm effectively
cleans up the image. On the average, the noise has no effect up to this
point. As € is decreased more, the noise starts appearing in the
estimate until at -40dB, the scattering function is almost completely
hidden by the noise.

The expected error in the estimate can be found by considering the

parameterized equation

(A + SF)S(8) = (M + &f) (4-58)

where

S(0)

S. (4-59)

The noise added to the matched filter is contained in the vector f and
the effect of truncating the SVD expansion is quantified by the matrix

F. Employing a Taylor expansion on S(§) about zero,
S(8) = S + §5(0) + 0(82). (4~60)

Making a few substitutions it is easily shown that[6]

1S(8) - 81 < x (A) [&EJ. + 5.&1], (4=61)
T - 1A Ml
ll_S_i = b
where
o
K(A) = 2%, (4-62)

min




62

the conditioning number of the matrix A. This places an upper bound on
the error in the estimate. It was assumed that the 0(62) terms are
negligible.

Returning to the definition of the SVD,
N —
A= 7] o u u (4-63)

where the Uj's are the singular vectors assuming A is a real symmetric

matrix. The sum can be split into two sums,

A= ¥ o u o+ Yoo u, u,, (4-64)
>

the right term containing the singular values which were taken out of

the SVD expansion due to truncation. Therefore,

F= =Y 5 T, ur (4-64)
—_ 1 1

and since truncation also reduces the conditioning number,

o

c(a) = X g > € (4-65)
- o_. min

min

the smallest singular value now being equal to or greater than the

threshold value ¢. Equation (4-61) is now,

1S(5) - Si o} Hc Z;i‘ailai ﬂ
= = _bax |, i + 5= . (4-66)

1S o, TAI Ml
- min —




63

To support the validity of this result, there are three limiting

cases to consider, The first is the case of no noise in the matched

filter. Since #ff 0, the threshold € can be set to zero at which
point the term UFl = 0 and as long as opjn » 0, the error bound is
zero.

Now assume there is noise, i.e., 1fl # 0. As e approaches its
maximum value of gpyy, the term IFI gets large and hence the error bound
grows large. This was observed in the preceding examples for a
threshold set too high.

Lastly, let £ go to zerc and assume, as was the case in the
examples, that A is ill-conditioned, that is x(A) is large. The term
IFY goes to zero but as opjpn gets smaller, Opgy/0pjn grows large and in
multiplying by 1fl, the error bound again grows large. This was
observed as the result of setting the threshold too low.

Thus it has been shown that Equation (4-66) is in agreement with
the actual results demonstrated in the examples. Considering this
equation term by term, the general trends can be seen. Consider the
error versus threshold (&) behavior of the conditioning number
multiplied by the noise (Uf!) term. For a given matched filter, the
noise term is constant. If the threshold is set to zero, this term is
at a maximum. As € is increased, the conditioning number decreases
monotonically to a value of one where this term reaches its minimum.

Next, considér the conditioning number multiplied by the truncation
error (1F1) term. If the threshold is set to zero, IFI = 0 and so this
term is at a minimum. As € is increased, the error term increases and
the conditioning number decreases to one. AIt is difficult to predict

the actual behavior of this term but it is clear from the examples that
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this term has its minimum at ¢ = 0 and its maximum when the conditioning
number reaches a value of one.

Summing the two terms, it becomes clear that there is a minimum
error somewhere between the two extrema. This idea opens up a fascinat-
ing new topic which deserves further attention and it is the recommen- .

dation of the author that this be investigated in future work.
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Chapter 5

Summary and Conclusions

The expected matched filter output from a communications channel
characterized by a scattering function is considered. Treating this
matched filter as an image, blurring due to the properties of the
interrogating signal is modelled as a convolution process, Treating
convolution as a multiple band-pass filtering operation, the process of
deconvolution becomes the problem of finding the inverse filter. This
is the basis for the standard spectral division method of deconvolution.
The spectrum of the filter modelling the convolution process is simply
inverted to yield the inverse filter. Problems arise when the original
filter has a wide dynamic range as division by small numbers results in
amplification of any noise in those spectral regicns.

The thesis details a formulation of the problem employing an SVD to
produce the inverse filter., Written as a simple matrix multiplication,
the deconvolution is performed by finding a pseudo-inverse matrix used
to remove the effects of the ambiguity function. The problem was first
formulated to take advantage of the highly tractable nature of the BCCB
matrix form. It was shown that deconvolution via the pseudo-inverse
method is identical to deconvolution via spectral division.

1f the matrix to be inverted is ill-conditioned, the pseudo-inverse
deconvolution becomes an inherently noisy process. The reason is due to
a wide dynamic range in the ambiguity function spectrum, identical to
the cause of problems in the spectral division method. The singular
values are shown to be equal to the values of the spectral components of
the ambiguity function. Spectral regions with small values have a low

SNR in a noisy matched filter; hence, the inverse filter accentuates the
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noise. Attempting to diminish the problem, the SVD expansion is
truncated.

As a result of the truncation, resolution is lost in the deconvol-
ution process. There is, therefore, a trade-off between minimization of
the noise and retained resolution of the process output. This is shown
graphically. A short analysis of the expected error provides an equa-
tion which was shown to properly predict the trends. More importantly,
the equation suggests the existence of a threshold value which minimizes
the error. It is highly suggested that this topic be given attention in

furthering this thesis. Such a relationship can prove to he very useful

when apnlving a deconvolution algerithm,
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